Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions
نویسندگان
چکیده
Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump-probe measurements on platelet-shaped Cu3-x P NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-x P NCs. It is likely that both the LSPR and the p-type character of our Cu3-x P NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-x P NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-x P NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-x P is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-x P/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-x P NCs an interesting material platform from which to access other metal phosphides by cation exchange.
منابع مشابه
Cu₂Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange.
Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote f...
متن کاملControllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
Self-doped Cu2-xS nanocrystals (NCs) were converted into monodisperse Cu2-xS-Au2S NCs of tunable composition, including pure Au2S, by cation exchange. The near-infrared (NIR) localized surface plasmon resonance (LSPR) was dampened and red-shifted with increasing Au content. Cation exchange was accompanied by elimination of cation vacancies and a change in crystal structure. Partially exchanged ...
متن کاملMicellization of long-chain ionic liquids in deep eutectic solvents.
The aggregation behavior of the ionic liquid (IL) 1-alkyl-3-methylimidazolium chloride with different alkyl chain lengths in a deep eutectic solvent (DES, composed of choline chloride and glycerol in a 1 : 2 mole ratio) was studied for the first time. The critical micellar concentration, micellar size and intermolecular interactions in IL/DES solutions were investigated by different techniques ...
متن کاملPlasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption†
Combined plasmonic nanocrystals and metal–organic framework thin-films are fabricated for sensing gases in the near-infrared range. This nanocomposite thin-film shows a highly sensitive response in near-infrared absorption, which is attributed to preconcentration of gas molecules in metal–organic framework pores causing close proximity to the electromagnetic fields at the plasmonic nanocrystal ...
متن کاملStructure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared
Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) pr...
متن کامل